题目:Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4],the contiguous subarray [2,3] has the largest product = 6.
这道题属于动态规划的题型,之前常见的是Maximum SubArray,现在是Product Subarray,不过思想是一致的。
当然不用动态规划,常规方法也是可以做的,但是时间复杂度过高(TimeOut),像下面这种形式:1 // 思路:用两个指针来指向字数组的头尾 2 int maxProduct(int A[], int n) 3 { 4 assert(n > 0); 5 int subArrayProduct = -32768; 6 7 for (int i = 0; i != n; ++ i) { 8 int nTempProduct = 1; 9 for (int j = i; j != n; ++ j) {10 if (j == i)11 nTempProduct = A[i];12 else13 nTempProduct *= A[j];14 if (nTempProduct >= subArrayProduct)15 subArrayProduct = nTempProduct;16 }17 }18 return subArrayProduct;19 }
用动态规划的方法,就是要找到其转移方程式,也叫动态规划的递推式,动态规划的解法无非是维护两个变量,局部最优和全局最优,我们先来看Maximum SubArray的情况,如果遇到负数,相加之后的值肯定比原值小,但可能比当前值大,也可能小,所以,对于相加的情况,只要能够处理局部最大和全局最大之间的关系即可,对此,写出转移方程式如下:
local[i + 1] = Max(local[i] + A[i], A[i]);global[i + 1] = Max(local[i + 1], global[i]);
对应代码如下:
1 int maxSubArray(int A[], int n) 2 { 3 assert(n > 0); 4 if (n <= 0) 5 return 0; 6 int global = A[0]; 7 int local = A[0]; 8 9 for(int i = 1; i != n; ++ i) {10 local = MAX(A[i], local + A[i]);11 global = MAX(local, global);12 }13 return global;14 }
而对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:
max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
对应代码如下:
1 #define MAX(x,y) ((x)>(y)?(x):(y)) 2 #define MIN(x,y) ((x)<(y)?(x):(y)) 3 4 int maxProduct1(int A[], int n) 5 { 6 assert(n > 0); 7 if (n <= 0) 8 return 0; 9 10 if (n == 1)11 return A[0];12 int max_local = A[0];13 int min_local = A[0];14 15 int global = A[0];16 for (int i = 1; i != n; ++ i) {17 int max_copy = max_local;18 max_local = MAX(MAX(A[i] * max_local, A[i]), A[i] * min_local);19 min_local = MIN(MIN(A[i] * max_copy, A[i]), A[i] * min_local);20 global = MAX(global, max_local);21 }22 return global;23 }
总结:动态规划题最核心的步骤就是要写出其状态转移方程,但是如何写出正确的方程式,需要我们不断的实践并总结才能达到。